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SUMMARY 
We consider piezoelectric plates with a thickness small with respect to the lateral dimensions. The surfaces of these 
plates are partly coated with electrodes. Equations are derived which describe the lateral vibrations of these plates 
approximately. The first resonance-frequency of a circular plate as a function of the radius of the electrodes is computed 
and compared with measured values. 

1. Introduction 

In this paper extensional vibrations of piezoelectric plates are investigated. Piezoelectricity is 
a reversible, electromechanical phenomenon. In materials exhibiting this effect, stresses and 
strains occur when an electric field is applied and inversely, mechanical stresses produce 
electric polarization and hence an electric field [1], [2]. 

The faces of the plates considered here are partly coated with electrodes, situated sym- 
metrically with respect to the middle plane (fig. 1). Two parts of the plate can be distinguished, 
a part with faces which are free of electrodes (I) and a part with electroded faces (II). When an 
alternating potential difference is applied to the electrodes, extensional vibrations occur. The 
middle plane in between the faces remains fiat. In this paper a simple theory is stated for low- 
frequency modes. The linear, three-dimensional equations for a piezoelectric body are reduced 
to two-dimensional ones. The two-dimensional approach is based on exact solutions for 
infinite plates both free of electrodes and completely covered by electrodes. By applying 
suitable boundary conditions we "match" the solutions for both parts of the plate. 

Figure 1. Piezoelectric plate with electrodes. 

This theory is applied to a circular piezoceramic plate covered by concentric circular 
electrodes. The first resonance frequency is computed as a function of the ratio of the radius of 
the electrodes to the radius of the plate. These numerical results are checked by experiments. 

2. The linear Equations of Piezoelectricity 

Throughout  this paper the stresses, strains, electric field and electric displacements are supposed 
to be small in order that the linear piezoelectric equations can be applied. These are given in 
tensor notation. A vertical line followed by an index denotes covariant differentiation, a 
comma followed by an index ordinary differentiation and a dot differentiation with respect to 
time. The summation convention for repeated indices is employed. Latin indices range over 
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1, 2 and 3 ; Greek indices over 1 and 2. In general coordinates 01, 0 2, 0 3 the basic piezoelectric 
equations are : 

T ij = %iJuSkt-- ekiJEk, (1) 

D i = eikt Sk I _~ S~ik Ek ' (2) 

in which the Su represent the strain-tensor, the Dk the electric displacements, the Tk~ the stress- 
tensor and the E k the electric field. The elastic coefficients are denoted by EciykZ, the piezoelectric 
ones by e ikI and the dielectric ones by %ik. Equations (1) and (2) are algebraically equivalent 
with : 

Sij  = ESijkl T kl + dk. l jEk , (la) 

D i -= d!k I T kl --}- T e i k E  k . (2a) 
In addition to these equations the following ones are valid. The equations of motion: 

TiJl i = pO' (3) 

where p represents the density and U ~ the displacement in the 0 i direction. The strain-dis- 
placement relations : 

S u = �89 Ij+ Ujl,). (4) 

Finally, with restriction to the quasi-static treatment of the electric field, the Maxwell equations 
of electrostatics : 

O~l~ -- 0 ,  (5) 
E~ = - V,,. (6) 

The equation (1)-(6) hold inside the piezoelectric material. Although polarization plays a 
fundamental role in piezoelectricity, it does not appear explicitly here. We restrict ourselves to 
the remark that the polarization can be expressed linearly in the electric field and the electric 
displacement. 

At the boundary of the body the following transition-conditions must be satisfied. Denoting 
the tangential component of the electric field and the outward directed normal component of 
the electric displacement inside and outside the body by ~(o,r(~ ,~(t)~'(~ and ~(,),n") ,.,(,),n(o) we have: 

E~i) _ ~-(o) (7) (t) - -  ~(t) , 
D(O) n(o = F (8) 

(n)  - -  ~ ' ( n )  

where F represents the free charge on the boundary. 

3. Exact Solution for the Infinite Plate 

We consider an infinitely extended piezoelectric plate in vacuum described by cartesian 
coordinates xl, x2, x3. The faces of the plate are given by x3 = +_h (h constant) and they are 
either free of electrodes or completely covered by electrodes. The faces x3 = _+ h are traction-free. 

~X 3 
I 

hl  
I 

i X 2 I I 

~ . i  [-h 
x l  l 

Figure 2. The infinite plate. 

In case electrodes are present a constant charge distribution on the electrodes will be prescribed, 
q on the upper one and - q on the lower one. The plate is loaded at infinity by constant stresses 
T 11, T 12 and T 22. In this section a solution with constant stresses, strains, electric field and 
electric displacements will be found which satisfies the transition--and boundary---conditions. 
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Now the T j3 become zero throughout the plate, since they vanish at x3 = +_h. The T "a are 
equal to the prescribed stresses at infinity. 

The electric field outside the plate is the sum of a field due to the charge on the electrodes and 
a field due to the polarization inside the plate. Since the polarization is constant and the charge 
densities are constant and opposite, the field outside the plate vanishes and the electric dis- 
placements outside the plate vanish too [4]. Transition-condition (7) and (8) now yield: 

E~ = 0; D 3 = - q ,  (9a), (9b) 

inside the plate. When no electrodes are present we have Da=q = O. 
For i--3 equation (2a) reads: 

_ q = d 3 . ~  T~p + T•33 E3 ' (10) 
which we use to express E3 in q and T "a. Substituting this expression in (la) and the remaining 
equations of (2a) we find: 

( d~"Jda'~) d3.,j Sij= ESijctfl-- Tg33 T ~ -  r ~ q , "  (11) 

TeX3 d 3 \ Tg;~3 
o k = - - T 33 q ( 2 2 )  

Now the electric field components, the strains and electric displacements are expressed in 
the known quantities T ~a and q. Equation (6) gives: 

V= - E 3 x  3. (13) 

Equation (4) can be solved for the displacements. Assuming at the origin: 

U 1 = U2 = U 3 = 0 ,  (14a) 

/'/3,1- "~" U3,2 : U2,1 = 0 ,  (14b) 
in order  to avoid a rigid body motion, they become" 

U 1 = S 1 tX1- q - 2 S 1 2 x 2 - t - 2 S t 3 x 3  

b/2 = $2 2 x2  .ql_ 2Sz 3 x3 (15) 
//3 : $33X3 " 

We conclude that the middle plane remains fiat. The solution given above satisfies the equations 
and boundary-conditions mentioned in section 2. 

4. Equations for a Thin, Partly Electroded Piezoelectric Plate 

A piezoelectric plate partly coated with electrodes on the surfaces is considered (fig. 1). The 
lateral dimensions of the parts I and II will be large with respect to the thickness. A two- 
dimensional theory for the extension of this plate is derived in this section. We first consider 
part II. 

The position vector R of a point of the plate will have the form [5], page 185 : 

R -- r(0' ,  02 )+03 ,  3 (16) 

where 03 = 0 represents the middle plane of the plate; a3 is a constant unit vector perpendicular 
to the middle plane. We assume that the local distribution of stresses, electric field and electric 
displacements over the thickness are the same as for the infinite plate. Hence these quantities 
will be independent of 03, and the T ;3 and E~ are neglected, while E3 = - (2h)- 1 V and D 3 = - q. 
Here V represents the potential difference between the faces 03= ___ h. Equations (1) yield for 
j = 3 :  

0 = ~c i3kl Skt+ (2h)- ~ e 3'3 V.  (17) 
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\ 

~xx~ 
Figure  3. E lement  of the  plate.  

By equations (17) the S j3 are expressed in S~r and V. Hence they will not appear explicitly 
in the plate equations. In virtue of the elimination of the S j3, the equations (1) and (2) transform 
into : 

T,# ~#,6~ +(2h)-103~#,I (18) : ~'(1) ~76 ~(1) v ,  

- q = e~?) ~ S , 6 -  (2h)- ' e ~  V ,  (19) 

where ~(1)'~'#~6, e~)~ and e~  represent the elastic, piezoelectric and dielectric constants after elimi- 
nation of the Sja. 

Instead of the equations of motion for an infinitesimal three-dimensional element, we will 
consider the equations of motion for the plate-element given in fig. 3 (Since we consider 

8TO~B 
TaB �9 ~--~----1 Axl 

I 
/ 

extensional motions only, the equations of motion in the a3 direction is neglected). The equa- 
tions are obtained by integrating equations (3) for i=  1, 2 over the thickness: 

if __ T~,# lad03 + ~3 ~,3 {T(03=h)-- T(o3 = -h)} = O~d03 . (20) 
2h -a -h 
~3 The T(o~= +_h) vanish and the integrand of the integral at the left-hand side is supposed to be 

independent of 03. Introducing the mean of U ~, denoted by U ~, the right-hand side reads 
p U  ~, hence" 

T~aI# = p U  ~ . (21) 

Since the S,a are assumed to be constant over the thickness, integration of equation (4) 
yields" 

S,# = �89 Upl~). (22) 

Since V is constant in part II, substitution of (22) and (18) into (21) now gives : 

c~{ ~ Url6a = p U  ~ . (23) 

The relation between the total charge Q on the upper electrode and the potential V follows 
from (19) 

Q = f f q  dA = I f  { ~ + ( 2 h ) - ' s ~ V }  

= - i f  e ~ ( ~ U r l 6 d A + ( 2 h ) - l s ~ V A  (24) 

= _  I4   ,%dS+(2ht-'4dVA 
in which A represents the area of the electrode, II dA denotes integration over this area and 
.[ ds integration over its boundary. The v6 represent the covariant components of the outward 
directed unit normal vector on the boundary I-5], page 31. 

In part I the equations (18), (19), (21) and (22) holds also, if q=0.  Elimination of V from 
(18) and (19) yields: 

T~  ,~r e (25) = ~'(2) ~'~6, 
where 

n3~p o375 
~#~6 ~(1) ~(a) (25a) 
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Substitution of (22) and (25) into (21) now yields: 

e~2a[ ~ V~l~p = pO ~ �9 (26) 

The equations (23) and (26) are matched on the boundary of part I and part II on condition 
that the stresses and the displacements must be continuous at this boundary. By means of an 
energy consideration as in [6] uniqueness of solution can be proved provided the following 
conditions are satisfied: 

(1) on the boundary of the plate either the stresses or the displacements are prescribed. 
(2) on the electrodes either the potential V or the total charge Q is prescribed. 
It can be seen that the piezoelectric effect is only noticeable in the coefficients of the equations 

(24) and (26) but not in the coefficients of (23). Hence, in case of a fully electroded plate the 
piezoelectric effect appears only in the stress-boundary conditions according to equations (18). 

5. Rotational Symmetric Vibrations of a Circular Ceramic Plate 

As an application of the equations derived in Section 4 we consider a circular ceramic plate with 
radius R. In order to achieve rotational symmetry, the direction of polarization of the ceramic 
is perpendicular to the plane of the plate. Only the radial, rotational symmetric vibrations 
of this plate are considered. We first consider a plate with completely electroded surfaces. 

In cartesian coordinates the coefficients of ceramic material can be denoted by the following 
tables. The elastic coefficients: 

E S l l l i  ESl122 ESl133 0 0 0 

Esll l l  EStla3 0 0 0 

ES3333 0 0 0 

~S1313 0 0 

ES1313 0 
1 [E~ g ~  
2~ ~'1111-- ~1122) 

The piezoelectric coefficients: 

0 0 0 0 

0 0 0 d113 

d3.11 d3.11 d3.33 0 
The dielectric coefficients: 

T~I 1 

0 

0 

Since T j3 

811 ~- 

$22 
812 = 

D 3 = 

atll  0 
0 0 

0 0 

0 0 
Tell 0 

0 T833 

and E~ are neglected equations (la) and (2a) reduce to:  

E~ T l l  ~_E~ T22+d311E3 ~1111"  ~ ~1122 . 
E S T i i -t- T 22 1122 ESl111 +d311E3 

� 8 9  ,22) T 12 , 

d3.11 (T 11 + T22)+T833E3 . 

(27) 

(28) 

The elastic coefficients are usually expressed in Young's modulus Y= (ES 1111)- 1 and Poisson's 
ratio v = -YfS1122.  An inversion of these equations yields: 

T 11 =oqSll+o~2Sz2+CZa(2h)-1V, 
T 22 = a2 S~a + ~1 $22 + 0% (2h)-1 V,  (29) 
T12=1(  
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q = - ~3 (Sal + S2z)+ e4(2h) -1 V, (30) 

where 
Y vY  

O~ 1 = 1__112 ; 0~2 = I__V z ; 

yd3t t  " ~4 = T/~33 (1 -- 2kt 
~ 3 -  1 ; v  ' 1-~v/" 

The constant k~ is the square of an electromechanical coupling-factor: 

k l -  Y(d3"11)2 
rea3 (31) 

We try to find a rotational symmetric solution in polar coordinates (r, q~). Denoting the radial 
displacement by U~, we have: 

U " =  U~ = U.(r) (32) 

S,~ = U,.r ; S~o,p = rU~ ; S~,p = 0. (33) 

After a tensor-transformation equations (29) and (30) read: 

0~ 2 
T" = g l S r r  -'[- ~ -  S ~ + a 3 ( 2 h ) - ~ V ,  

72 ~ ct3 (2h)-  1 V T~~ = ~-z S,, + ~- S~o~ + ~- (34) 

T ~ -  2r ~ - S , ~ ,  

0C3 Sq~q~ -q- ~4 (2h) - 1  V .  (35) q = - - o ~ 3 S r r -  

Substitution of (33) yields: 

TrrT~=~Ur.~+~U,+_~=~IU~'~+~;-U'+ct3(2h)-IV'ct2 ~1 ~a (2h)- 1V , ] (36) 

( ) 1 
q = - ~ 3  Ur,r+ r V, + ~ 4 ( 2 h ) - t V .  (37) 

The equation of motion in the radial direction reads: 

T~ ~_rT~,~, + 1 T ~ =  pCjr. (38) 
Y 

After a substitution of (36) and on the assumption of a periodic solution U~ (r) cos mr we find: 

U, r r + r U , , +  r2 U , = 0 .  (39) 
' ' \ ~ 1  

With a change of variable t=r (p / e l )~m:  

t 2 U,,t, + t Ur,, + (t 2 - 1) U~ = 0 .  (40) 

We use the Bessel functions J1, Yt as a fundamental system of solutions. Since U,(0)= 0: 

U~(t) = C1J1 (t).  (41) 

Considering the boundary condition T~)= 0 we find from (36) (with J'l (z)= do ( z ) -  z - l J ~  (z))" 
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C-2a J1 (to) + to Jo(to) + c~ (2h)-1 V 0, (42) 
R c( i 

where to=R(p/cq)~co. The total charge Q on the upper electrode follows from (37)" 

Q =  if  qdA =~4(2h)-t VT~R2-~3 i~ (U~,, + 1 U ' )  

= rc R {c(, (2h)-1 VR - 2c% C1 J1 (t o)}. (43) 

The equations (42) and (43) give the solution when co and either Q or V is given. 
We define the fundamental frequencies of the plate as the frequencies at which the plate is 

able to vibrate without external energy-supply. There are two possibilities: 
1) The resonance frequencies co,. In this case V=0 and % follows from (42) since C1 #0" 

~2 - ~1 s l  (to) + to So (to) = 0 .  (44) 

2) The antiresonance frequencies c%. In this case l=dQ/dt=O and hence Q=0  and after 
elimination of V from (42) and (43) we find co, from: 

(~ - ~1)~,  + 2 ~  J1 (to)+ to So (to) = o .  (45) 
~1 ~4 

When we consider a plate without electrodes, q vanishes and elimination of V from (36) and 
(37) yields: 

T ~ = f l i U , , , + ~ U , ,  
(46) 

T~,,~ 32 U,, + 31 
= 7  , ~ u , ,  

where 
= (1-kl)(1 -v )  

~4 1 - v -  2kl 

_ _  ( v + k l ) ( 1  -v)  
32 = cq + ~ = ~2 ~4 v ( 1 - v - 2 k l )  

The equation of motion reads  

s 2 Ur,s~+sU~,~+(s 2 - 1)U, "--- 0, (47) 

with s=r(p/fll ) co. The boundary conditions U~(0)=0 and T'~(R)=0 yield" 

U, = C2 Sl (s) (48) 

R Sl(So)+SoJo(So) - 0 (49) 

where s o = R(p/fli)~ co. Here the external energy-supply vanishes since Q = 0 and the fundamental 
frequencies follow from equating the. last factor in the left-hand side of (49) to zero. 

Finally we consider a plate with concentric electrodes of radius 2R, 0 < ~. < 1. The solution 
in both parts is given by 

U~ = C1Jl (t) 0< r<  2R 
U~= C2Jl(s)+C3 rl(s) 2R< r<  R (50) 

with the following boundary conditions" at 2R the displacements must be continuous: 

C1Sl ( t l ) -  C2J1 (81)- C3 I11 (sl) = 0,  (51) 

at ;LR the stress T '~ must be continuous" 
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C1 {(~2 - ~1)']1 (tl)-t- ~z 1 t 1 Jo (q)} 

-- C2 { (f12 -- ]~1) J1 (s1)-~- ]~lS1 Jo (s1)} 

- C3 { ( f l 2 - f i , )  Y~ ( s l )+  illS2 Yo(Sl)} = - a 3  (2h) -1 V2R, 

at R the stress T"  must vanish: 

c2{(fl2-fl )J (s )+fl,S Jo(S2)} 

-+-C3 {(f12 - i l l )  Yl(S2)[-fllS2 Yo(s2) } -- 0 ,  
where: 

; \ ~ l J  ~kfll/ co ; 

Finally we find Q from (43): 

~ 

\ / h /  co" 

(52) 

(53) 

Q = rc2R (~,(2h)-X V2R-  2~3 C1J1 (q))- (54) 

Equations (51)-(54) give the solution when co and either Q or V are given. At a resonance- 
frequency V= 0 and we find co, by equating the determinant of the equations (51)-(53) to zero. 
Hence the determinant of the following matrix must vanish : 

/ J1(~1) i -- Jl(Sl) [[ -- Yl(s1) 

i 
~ 0 I (fl:-fll)J~(s:)+fl~S:Jo(S:)] (fi:-fll)Yl(Sz)+fl~s:Yo(s:)/ 

(55) 
At any antiresonance-frequency Q = 0 and V is eliminated. We find that in the matrix given 

above only the element in the first column and in the second row must be changed into: 
�9 2 

(~2--~1 -~- 2 ag) J1 (tl)+altlJo(tt) . (561 \ a4/ 

We find the antiresonance-frequencies coa by equating the determinant of this matrix to zero. 

6. Experimental Verification 

Computations for the partly electroded plate, mentioned at the end of section 5 are performed. 
Using the notation of section 5 this plate is characterized by: 

Y = 5.8 �9 1010 N m -  z ," v = 0.39 ," p = 7.26 * 103 kg- m -  3 ," ] 

d3.11 = - 1.45 * 10-1 o Coul. N -  1 ," Te33 = 1.33 * 10- 8 Coul" (Vm)- 1 " / (57) 

k~=0.31 ; R = 0 . 0 2 5 m .  

These values belong to the ceramic P1-60 and were given by the manufactures of the plate [7]. 
The thickness which does not enter in the theory, was 1 mm. 

At each constant value of the ratio of the radius of the electrodes to the radius of the plate 2, 
the total charge on the upper electrode Q, and hence the capacity of the plate C =  Q/V, is 
computed. In figure 4 the behaviour of C as a function of co is given. 

We focus our attention to the two fundamental frequencies : the smallest resonance frequency 
cot at which the capacity C is infinite, and the smallest antiresonance-frequency coa, at which 
the capacity C vanishes. The values of co, and co, are computed as a function of 2 by equating the 
determinants mentioned at the end of section 5 to zero. These functions are given in figure 5. 
We compare these functions with measured values of co, and coa. Therefore we use the circuit 
given in figure 6. Here P represents the ceramic plate. A and B represent the input channels 
of a two-beam oscilloscope. The internal capacity of an input channel is 30 pf; they are denoted 
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J ~ a j f 

Figure 4. The capacity C of the plate as a function of the frequency co. 

jl 
~0 

4 7  

4 ~  

._= 43 

~ 4 1  

x--entiresonence 

+------ resonance 

\ 
+'-\ 

\ \ 
4-. \ h,. \ 

_ i ~ i i J i I I I _ _  

390 0.2 0.4 0.6 0.8 1.0 
x 

Figure 5. The resonance- and antiresonance-frequency as a function of the ratio of the radius of the electrodes to 
the radius of the plate. Measured values : + and x ; computed values: - -  and . . . .  . 

A 0 la Ib B 0 
I .... 

R4 I g / / /  , / J J l  

I 

IA  C~111 I I ] 3 I I 
I R1 I R 3  R 2  I I - - I  I I 

L--T-' ' T i I L I 
A I f requency-  I B~ 

L _  ge nes 

Figure 6. Circuit used for the measurements  in figure 5. 

by C 1 resp. C2. The oscilloscope is used in order to measure the current IA resp. I B. We used the 
following resistances : R t---R2 = 10 l] and R4 = 1000f~. Finally the frequency-generator 
possesses an internal resistance R3 = 200 f~ and an internal capacity C3 =25 pf. 

Between Ao and Aa the current Ia meets an impedance )' Z a =  R4 + 1 + icoC 1 , (58) 

with i = x / -  1. The first resonance-frequency will appear to be about 50 kHz. Hence in this 
range the phase-delay due to ZA is less than 2.10 -s  rad,<and we may consider ZA to be real. 

We consider the electric behaviour of the plate as a frequency-dependent capacity C, 
parallel-circuited with a resistance R. Hence the impedance between B o and B 1 is 
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ZB = + icoC(o~) + ~ + icoC2 (59) 

When co < 50 kHz, the phase-delay due to the second term in the right-hand side of (59) is less 
than 2.10-5 rad. Hence we may assume: 

,1 Z~ = + icoC(~, + Zm (60) 

with Z., real. 
The impedance ZB will generally be complex, except for two values of o), at which Z B is real: 
1) co=o),, since then C=  oe and Z n = Z  m 
2) co = co,, since then C = 0 and Z B = Zm + R 
The values o)r and co, can be read out very accurately as the values of 09 at which the two 

beams of the oscilloscope are in phase. These values are also given in figure 5. 
The similarity of the measured and computed values in figure 5 was achieved after a slight 

modification of two constants: 

Y= 5.4 * 101~ -2 ; d3.11 = -1 .37 * 10-1~ -1 , (61) 

and hence k~ ---0.28. This is a change of less than 10H in the electromechanical coupling factor 
which may be due to the tooling of the plate. 
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